Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1(i)	$\begin{aligned} & \operatorname{Var}(2 A-3 B)=4 \operatorname{Var}(A)+9 \operatorname{Var}(B)-12 \operatorname{Cov}(A, B) \\ & \Rightarrow 18=36+54-12 \operatorname{Cov}(A, B) \\ & \Rightarrow \operatorname{Cov}(A, B)=6 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	Correct formula. Allow one error Substitute relevant values CAO
(ii)	Since $\operatorname{Cov}(A, B) \neq 0, A$ and B are not independent	B1 ft 1 (4)	Must have a reason. ft Cov $\neq 0$
2(i) (ii)	$\begin{aligned} \mathrm{G}^{\prime}(t) & =8 \mathrm{e}^{4 t^{2}} / \mathrm{e}^{4} \\ \mathrm{E}(X) & =\mathrm{G}^{\prime}(1) \\ & =8 \end{aligned}$	M1A1 A1 3	M1 for $\mathrm{ct}^{2} / \mathrm{e}^{4}$
	EITHER: $G(t)=\mathrm{e}^{-4}\left(1+4 t^{2}+\ldots\right)$ $\mathrm{P}(X=2)=$ coefficient of $t^{2}=4 \mathrm{e}^{-4}$ or $4 / \mathrm{e}^{4}$ or 0.0733 OR $G^{\prime \prime}(t)=\left(8+64 t^{2}\right) \mathrm{e}$ $P(X=2)=\frac{1}{2} \mathrm{G}^{\prime \prime}(0)=4 \mathrm{e}^{-4}$ or $4 / \mathrm{e}^{4}$ or 0.0733	M1A1 A1 3 M1A1 A1 	Expand in powers of t M1 for reasonable attempt at $\mathrm{M}^{\prime \prime}(t)$
3(i)(ii)	Number of different rankings ${ }^{11} \mathrm{C}_{5}$ $=462$ For $R \leq 17$: $\begin{gathered} 1+2+3+4+5=15 \\ 1+2+3+4+6=16 \\ 1+2+3+5+6=17 \\ 1+2+3+4+7=17 \end{gathered}$ $P(R \leq 17)=4 / 462=2 / 231 \quad A G$	M1 A1 B2 A1 5	Number of selections of 5 from 11 B1 for 2 or 3 correct
	$\begin{aligned} & W=17 \\ & P(W \leq 17)=\frac{2}{231} \\ & \text { Smallest } S L=\frac{400}{231} \% \end{aligned}$	A1ft 2 (7)	Allow $\frac{4}{231} ; \mathrm{ft}_{231}^{231}$, but must be exact
4(i)	$\begin{aligned} & \text { EITHER: }(\alpha) \mathrm{M}^{\prime}(t)=n(1-2 t)^{-1 / 2 n-1} \\ & \mathrm{E}(Y)=\mathrm{M}^{\prime}(0)=n \\ & \mathrm{M}^{\prime \prime}(t)=n(n+2)(1-2 t)^{-1 / 2 n-2} \\ & \operatorname{Var}(Y)=n(n+2)-n^{2}=2 n \\ & \mathrm{OR}: \mathrm{M}(t)=1+n t+\frac{1}{2} n(n+2) t^{2} \\ & \mathrm{E}(Y)=n \\ & \operatorname{Var}(Y)=n(n+2)-n^{2}=2 n \end{aligned}$	M1 A1 A1 M1 A1 5 M1A1A1 A1 A1 5	Correct form for M1 Ft similar $\mathrm{M}^{\prime}(t)$ $M^{\prime \prime}(0)-\left(M^{\prime}(0)\right)^{2}$
(ii)	$M \mathrm{MF}=(1-2 t)^{-}$ X^{2} distribution with 60 d.f.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \quad 2 \end{aligned}$	From $\left[(1-2 t)^{-1 / 2}\right]^{60}$
(iii)	$\begin{aligned} & E(S)=60, \operatorname{Var}(S)=120 \\ & \text { Using CLT, Probability }=1-\Phi(10 / \sqrt{ } 120) \\ & =0.181 \end{aligned}$	B1 M1 A1 3 (10)	From (i) Correct tail: allow cc

5(i)	Assumes salaries symmetrically distributed $\mathrm{H}_{0}: m($ edian $)=19.5, \mathrm{H}_{1}: m($ edian $) \neq 19.5$ $P=867$ (or 408) Using normal approximation $\begin{aligned} & \mu=1 / 4 \times 50 \times 51(=637.5) \\ & \sigma^{2}=50 \times 51 \times 101 / 24(=10731.25) \\ & z=(a-637.5) / \sqrt{10731.25} \end{aligned}$ $\text { Use } a=866.5$ $=2.211$, or 2.215 or 2.220 (- from 408) Compare their z with 1.96 and reject H_{0} There is sufficient evidence at the 5% SL that the median salary differs from $£ 19$ 500	$\begin{array}{\|l} \hline \mathrm{B} 1 \\ \\ \mathrm{~B} 1 \\ \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { A1 ft } \\ \mathbf{1 0} \end{array}$	In context For both ; not μ; accept words $a=866.5,867,867.5 \text { (or } 408.5$ 408, 407.5) Or p-value rounding to 0.026 or 0.027 Compare with 0.05 or equivalent ft z Or find critical region
(ii)	Üse sign test when salary distribution is skewed	B1 1 (11)	
6(i)		B1 M1 A1 3	Calculate 9 probs in terms of c
(ii)	$\begin{aligned} & 9 c / 27 c \\ & =\frac{1}{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 ft } \\ & \mathbf{2} \end{aligned}$	Marginal probability AEF; ft c
(iii)	$\begin{aligned} & P(N+R>2) \\ & =15 c / 27 c=\frac{5}{9} \end{aligned}$	$\begin{array}{\|l} \mathrm{M} 1 \\ \text { A1 ft } \\ 2 \end{array}$	AEF; ft c
(iv)	$\begin{aligned} & \mathrm{P}(R=2)=\frac{15}{27} \\ & \mathrm{P}(N \mid R=2): p_{0}=\frac{4}{15}, p_{1}=\frac{1}{3}, p_{2}=\frac{2}{5} \\ & \mathrm{E}(N \mid R=2)=1 \times \frac{1}{3}+2 \times \frac{2}{5} \\ & =\frac{17}{15} \end{aligned}$	M1 A1 ft A1 ft A1 4	Using conditional probabilities One value; ft values in (i) All values Or 1.13
(v)	$\mathrm{Eg} P(N=0 \text { and } R=0)=0$ $\mathrm{P}(N=0) \times \mathrm{P}(R=0)=\frac{6}{27} \times \frac{3}{27} \neq 0$ So N and R are not independent	M1 A1 2 (13)	Or from conditional probs M0 from $N=1$ with $R=1$ or 2 All correct

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

